
PROGRAMMAZIONE
PROCEDURALE

A.A. 2023/2024

TYPES

TYPES

Programs have to store and process different kinds of
data, such as integers and floating-point numbers, in
different ways. To this end, the compiler needs to know
what kind of data a given value represents.

In C, the term object refers to a location in memory
whose contents can represent values. Objects that have
names are also called variables.

An object’s type determines:
üHow much space the object occupies in memory.
üThe values that a variable can have.
üThe operations that can be performed on that variable.

EXAMPLE

int main()
{
int x = 1, y = 2, z = 3;
printf(" x = %d, y = %d, z = %d \n", x, y, z);
{

int x = 10;
float y = 20;
printf(" x = %d, y = %f, z = %d \n", x, y, z);
{

int z = 100;
printf(" x = %d, y = %f, z = %d \n", x, y, z);

}
}
return 0;

}

TYPES IN C

Basic type
üStandard and extended integer types
üReal and complex floating-point types
Enumerated types

The type void

Derived types

üPointer types
üArray types
üStructure types
üUnion types
üFunction types

TYPES

The basic types and the enumerated types together
make up the arithmetic types.

The arithmetic types and the pointer types together
are called the scalar types.

Finally, array types and structure types are referred to
collectively as the aggregate types.

A function type describes the interface to a function;
that is, it specifies the type of the function’s return value,
and may also specify the types of all the parameters that
are passed to the function when it is called.

INTEGER

INTEGERS

There are five signed integer types. Most of these types can
be designated by several synonyms
üsigned char
üint signed, signed int
üshort short int, signed short, signed short int
ülong long int, signed long, signed long int
ülong long (C99) long long int, signed long long, signed long long

int
C defines only the minimum storage sizes of the other
standard types: the size of type short is at least two bytes, long
at least four bytes, and long long at least eight bytes.
Furthermore, although the integer types may be larger than
their minimum sizes, the sizes implemented must be in the
order:

üsizeof(short) ≤ sizeof(int) ≤ sizeof(long) ≤ sizeof(long long)

BOOLEANS

In C there is no true or false
0 is false

Any value different from 0 is true
ü1
ü-25
ü123456

if (3)
printf(”YES\n");

else
printf("NO\n");

if (0)
printf(”YES\n");

else
printf("NO\n");

BOOLEANS

C99 introduced the unsigned integer type _Bool to
represent Boolean truth values.

The Boolean value true is coded as 1, and false is coded
as 0.

If you include the header file stdbool.h in a program, you
can also use the identifiers bool, true, and false. The
macro bool is a synonym for the type _Bool, and true
and false are symbolic constants equal to 1 and 0.

CHARS

The type char is also one of the standard integer types.
However, the one-word type name char is synonymous
either with signed char or with unsigned char, depending
on the compiler.

It occupies 1 byte
Check the correspondence in the ASCII table
ühttp://www.asciitable.com

CHARS

You can do arithmetic with character variables. It’s up to
you to decide whether your program interprets the
number in a char variable as a character code or as
something else.

char ch = 'A'; // A variable with type char.
printf("The character %c has the character code %d.\n", ch, ch);
printf(”%c", ch + 1);

The character A has the character code 65.
B

BINARY/OCTAL/HEXADECIMAL

BINARY NUMERAL SYSTEM

In mathematics and digital electronics, a binary number
is a number expressed in the binary numeral system or
base-2 numeral system which represents numeric values
using two different symbols: typically 0 (zero) and 1
(one).

Because of its straightforward implementation in digital
electronic circuitry using logic gates, the binary system is
used internally by almost all modern computers and
computer-based devices. Each digit is referred to as a
bit.

1000101

HEXADECIMAL

Hexadecimal (also base 16, or hex) is a positional
numeral system with a radix, or base, of 16.

It uses sixteen distinct symbols, most often the symbols
0–9 to represent values zero to nine, and A, B, C, D, E, F
(or alternatively a, b, c, d, e, f) to represent values ten to
fifteen.

Hexadecimal numerals are widely used by computer
system designers and programmers. As each
hexadecimal digit represents four binary digits (bits), it
allows a more human-friendly representation of binary-
coded values.

One hexadecimal digit represents a nibble (4 bits), which
is half of an octet or byte (8 bits).

f1a2

OCTAL

The octal numeral system, is the base-8 number
system, and uses the digits 0 to 7.

FROM BINARY AND HEXADECIMAL
TO DECIMAL

1001 = 9

1021 = ? X

Binary Hexadecimal Decimal
0 0 0
1 1 1
10 2 2
11 3 3
100 4 4
101 5 5
110 6 6
111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

002B = 43

FROM DECIMAL TO BINARY

156

÷2 remainder

78

0

39

0

19

1

9

1

4

1

0

2 0

1 1

10011100 = 156

0

FROM DECIMAL TO HEXADECIMAL

1565

÷16 remainder

97

13 = d

6

1

6

61d= 1565

0

Octal follows the same algorithm

HOW MANY NUMBERS CAN I
REPRESENT?

From 0 to (2N − 1)
With 8 bits (one byte)
üFrom 0 to 255

However, it is useful to also represent negative numbers

Different representations
üSign and magnitude
üTwo’s complement

0000 0000 1111 1111

REPRESENTATION
IN MEMORY

SIGN AND MAGNITUDE

It uses one bit (usually the leftmost if big endian) to
indicate the sign. "0" indicates a positive integer, and "1"
indicates a negative integer. The rest of the bits are used
for the magnitude of the number. E.g.:
ü1001 1000
ü-24
if 1001 1000 is used to represent positive numbers

only?
ü152

HOW MANY NUMBERS CAN I
REPRESENT?

With n bits
üFrom (-2N−1 + 1) to (2N−1 − 1)
ü and ±0

For instance, with 8 bits,
üfrom -127 to + 127

1111 1111 0111 1111

A PROBLEM

Two different representations of 0
ü0000 0000 (+0)
ü1000 0000 (-0)

A solution is a different representation: two’s complement

TWO’S COMPLEMENT
Binary value Two's complement Unsigned

00000000 0 0
00000001 1 1
⋮ ⋮ ⋮

01111110 126 126
01111111 127 127
10000000 −128 128
10000001 −127 129
10000010 −126 130
⋮ ⋮ ⋮

11111110 −2 254
11111111 −1 255

In two's-complement, there is only one zero, represented as 00000000.
Negating a number (whether negative or positive) is done by inverting
all the bits and then adding one to that result

HOW TO GET THE COMPLEMENTARY

From any number to its complement:
üFlip all the bits (0->1, 1->0) and then + 1

0000 0101 (value 5)
ü1111 1010 (flip)
ü1111 1011 (+1)
1111 1011 value (-5)
ü0000 0100 (flip)
ü0000 0101 (+1)

HOW MANY NUMBERS CAN I
REPRESENT?

With n bits
üFrom (-2N−1) to (2N−1 − 1)
ü There is no “-0”, so it is possible to represent one more

negative number

For instance, with 8 bits,
üfrom -128 to + 127

The rule in the previous slide to get the complimentary
does not work because 128 is not representable with 8
bits in two’s complement

1000 0000 0111 1111

ENDIANESS

Endianness refers to the sequential order used to
numerically interpret a range of bytes in computer
memory as a larger, composed word value.

It also describes the order of byte transmission over a
digital link.
Words may be represented in big-endian or little-
endian format, depending on whether bits or bytes or
other components are numbered from the big end (most
significant bit) or the little end (least significant bit).
As examples, the IBM z/Architecture mainframes and the
Motorola 68000 series use big-endian while the Intel x86
processors use little-endian (in the 1970s).

MEMORY REPRESENTATION
An array of bytes
Every byte has its logical address (a positive number)
A logical address is the address at which an item appears to
reside from the perspective of an executing application
program.

0100 0000

0000 0000

0000 0000

0000 0000

1500

1501

1502

1503

0000 0000
0

2 represented on 4 bytes (little end.):
0100 0000
0000 0000
0000 0000
0000 0000

For 64-bit architectures the upper limit 264 − 1
0010 0100

BIG ENDIAN, LITTLE ENDIAN

Big endian:
1010=
-6

Little endian
1010 =
5

Two’s
complement
from now on

Big endian:
0010=
2

Little endian
0010 =
4

0100 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0010

Bi
g

en
di

an

Li
ttl

e
en

di
an

Big endian: right to left Little endian: left to right

BACK TO C

REPRESENTATION

So, how are integer represented in C? Sign magnitude or two’s complement?

8 bytes

SIZEOF

To obtain the exact size of a type or a variable, use the
sizeof operator. The expressions sizeof(type) and sizeof
expression yield the storage size of the object or type in
bytes. If the operand is an expression, the size is that of
the expression’s type.

sizeof(int) and sizeof(iIndex) returns 4

int iIndex,
iIndex = 1000;

LIMITS

You can find the value ranges of the integer types for
your C compiler in the header file limits.h, which defines
macros such as INT_MIN, INT_MAX, UINT_MAX, and
so on

int main() {
printf(" char %d %d %d\n", sizeof(char), CHAR_MIN, CHAR_MAX);
printf(" int %d %d %d\n", sizeof(int), INT_MIN, INT_MAX);
return 0;

}

FLOAT

FLOATING POINT TYPES

C also includes special numeric types that can represent
non-integers with a decimal point in any position. The
standard floating-point types for calculations with real
numbers are as follows:
üfloat: for variables with single precision
üdouble: for variables with double precision
ülong double: for variables with extended precision

PRECISION

A floating-point value can be stored only with a limited
precision, which is determined by the binary format used
to represent it and the amount of memory used to store
it.

The precision is expressed as a number of significant
digits. So that its conversion back into a six-digit decimal
number yields the original six digits.

The position of the decimal point does not matter, and
leading and trailing zeros are not counted in the six
digits.
üThe numbers 123,456,000 and 0.00123456 can both be

stored in a type with six-digit precision.

AR. OPERATIONS IN DOUBLE PREC.

In C, arithmetic operations with floating-point numbers
are performed internally with double or greater precision.

If you assign the result to a float variable, the value is
rounded as necessary.

float height = 1.2345, width = 2.3456; // Float variables have single
// precision.

double area = height * width; // The actual calculation is
// performed with double
// (or greater) precision.

FLOATS

The header file float.h defines macros that allow you to
use these values and other details about the binary
representation of real numbers in your programs. The
macros FLT_MIN, FLT_MAX, and FLT_DIG indicate the
value range and the precision of the float type.

E NOTATION

It's know as E notation, which is plain text representation
of scientific notation.
ü1.234e+56 means 1.234 × 1056

IEEE 754 FORMAT

Each finite number is described by three integers: s = a
sign (zero or one), c = a significand (or “mantissa”), q =
an exponent. The numerical value of a finite number is
ü(−1)s × c × bq

üwhere b is the base (e.g., 2 or 10), also called radix.
For example, if the base is 10, the sign is 1 (indicating
negative), the significand is 12345, and the exponent is
−3, then the value of the number is −12.345

The 754 format for single precision is
üSign 1 bit
üExponent 8 bits
üSignificand 23 bit

EXAMPLE

124 - 1271 + 1 x 2-2

DOUBLE AND EXTENDED PRECISION

Double precision: double in C

Extended precision: long double in C

EXAMPLES

#include <stdio.h>

int main(){
int a= 16777217;
float b= a;
printf("%f\n", b);

}

16777216.000000

Rounding error is inherent in floating-point computation

float height = 1.2345, width = 2.3456; // Float variables have
// single precision.

double area = height * width; // The actual calculation
// is performed with
// double precision.

MORE ERRORS

float height = 1.2345, width = 2.3456;.

float area = height * width;

HOW TO AVOID PROBLEMS

The easiest way to avoid accumulating error is to use
high-precision floating-point numbers (this means
using double instead of float). On modern CPUs there
is little or no time penalty for doing so, although
storing doubles instead of floats will take twice as much
space in memory.

ENUM

ENUM TYPES

Enumerations are integer types that you define in a
program

The definition of an enumeration begins with the keyword
enum, possibly followed by an identifier for the
enumeration, and contains a list of the type’s possible
values, with a name for each value:

enum [identifier] { enumerator-list };
An example is
üenum color { black, red, green, yellow, blue, white=7, gray };
üthe constants listed have the values 0, 1, 2, 3, 4, 7, 8

EXAMPLES

enum color fgColor = blue, // Define two variables
bgColor = yellow; // of type enum color.

void setFgColor(enum color fgc); // Declare a function with a parameter
// of type enum color.

You may perform ordinary arithmetic operations with
variables of enumerated types:
üred + red = 2
Different constants in an enumeration may have the same
value:
üenum signals { OFF, ON, STOP = 0, GO = 1, CLOSED = 0,

OPEN = 1 };

MORE EXAMPLES

enum boolean { false, true };
üenum boolean check;

#include <stdio.h>

enum week { sunday, monday, tuesday, wednesday, thursday, friday, saturday };

int main(){

enum week today;
today = wednesday;
printf("Day %d",today+1);
return 0;

} Day 4

WHEN TO USE ENUM

You should always use enums when a variable
(especially a method parameter) can only take one out of
a small set of possible values.

If you use enums instead of integers, your avoid errors
from passing in invalid constants, and you document
which values are legal to use. Moreover, it is more
mnemonic to use them instead of integer values.

VOID

VOID

The type specifier void indicates that no value is
available.

Consequently, you cannot declare variables or constants
with this type, but you can use
üvoid in function declarations
üVoid expressions
üPointers to void (back to this when we will study pointers)

VOID IN FUNCTIONS

A function with no return value has the type void.
üvoid error(int a) {}
void in the parameter list of a function prototype indicates
that the function has no parameters:
üvoid printMenu(void) {}
The compiler issues an error message if you try to use a
function call such as printMenu(3).

SU LIBRO

Pag 423, 424, 635, 636
Sezione 7.7 (sizeof)

Sezione 10.11 (enum)

Sistema binario
ühttps://www.liceomorgagni.edu.it/sites/www.liceomorgagni.it/f

iles/materiali-docente/simboli_cifre_numeri.pdf
ühttp://infodoc.altervista.org/sistemi-di-numerazione-binario-

ottale-esadecimale/#_Toc92978982
ühttps://www.math.unipd.it/~aiolli/corsi/0708/infxbio/lez08.pdf

https://www.liceomorgagni.edu.it/sites/www.liceomorgagni.it/files/materiali-docente/simboli_cifre_numeri.pdf
http://infodoc.altervista.org/sistemi-di-numerazione-binario-ottale-esadecimale/
https://www.math.unipd.it/~aiolli/corsi/0708/infxbio/lez08.pdf

