
PROGRAMMAZIONE
PROCEDURALE

A.A. 2023/2024

COMMENTS

COMMENTS

There are two ways to insert a comment in C:
üblock comments begin with /* and end with */, and
üline comments begin with // and end with the next new line

character.
You can use the /* and */ delimiters to begin and end
comments within a line, and to enclose comments of
several lines.

You can use // to insert comments that fill an entire line,
or to write source code in a two-column format, with
program code on the left and comments on the right:

double pi = 3.1415926536; // Pi is 3,14

COMMENTS 2

Inside the quotation marks that delimit a character
constant or a string literal, the characters /* and // do not
start a comment. For example, the following statement
contains no comments:

printf("Comments in C begin with /* or //.\n");

The first */ will terminate the opening of the multiline
comment: not possible to nest block comments

You can insert /* and */ to comment out part of a program
that contains line comments:

/* Temporarily removing two lines:
double pi = 3.1415926536; // Pi is 3.14
area = pi * r * r; // Calculate the area
Temporarily removed up to here */

EXAMPLE

#include<stdio.h>
int main(){

int x= 4; /*
int y= 10; /*

printf("x= %d\n", x); */
printf("y= %d\n", y); */

} Comment closed here

Comment starts here

ALL ABOUT COMMUNICATION

We write code to be executed by a computer, but to be
read by humans. You write code for:
üYou right now, as you’re writing it. The code has to be crystal

clear so you don’t make implementation mistakes.
üYou, a few weeks (or months) later as you prepare the

software for release.
üOther people on your team who have to integrate their work

with this code.
üThe maintenance programmer (which could be you or

another programmer) years later, when investigating a bug in
an old release.

COMMUNICATION

It can also look pretty, but be unreasonably hard to
maintain.

/**
* This is a pretty comment. *
* Note that there are asterisks on the *
* righthand side of the box. Wow; it looks neat. *
* Hope I never have to fix this tiypo. *
**/

It’s cute, but it’s not easy to maintain. If you want to
change the comment text, you’ll have to manually rework
the right-hand line of comment markers.

BAD COMMENTING EXAMPLES

Stupid, redundant comments range from the classic example
of byte wastage:

i=i+1; // increment i

// loop 5 times and add input values together
int sum= 0, count= 0, n;
while (count < 5) {

scanf(“%d”, &n);
sum= sum + n;
count= count+1;

}

GOOD AND BAD COMMENTING

It’s also common to see “old” code that has been
surgically removed by commenting it out.

Do not remove code by commenting it out. It confuses
the reader and gets in the way.
üYou can do it when you are still in the debugging phase, to

check how different encodings work if you have a run-time
error for instance.

Often, a clarification comment is a code smell. It tells you
that your code is too complex. You should strive to
remove clarification comments and simplify the code
instead because, “good code is self-documenting.”

CHARACTER SETS

CHARACTER SETS

Accordingly, C defines two character sets:
üthe source character set is the set of characters that may

be used in C source code, and
üthe execution character set is the set of characters that can

be interpreted by the running program.

In most implementation they are the same.

BASIC SOURCE AND EXECUTION
CHARACTER SETS

PLUS…

WHITESPACE CHARACTERS

Whitespace characters are
ü‘\f’ form feed;
ü‘\n’ newline;
ü‘\t’ horizontal tab;
ü‘\v’ vertical tab.

IDENTIFIERS

IDENTIFIERS

The term identifier refers to the names of variables,
functions, macros, structures and other objects defined
in a C program. Identifiers can contain the following
characters:
üThe letters in the basic character set, a–z and A–Z.

Identifiers are case-sensitive.
üThe underscore character, _.
üThe decimal digits 0–9, although the first character of an

identifier must not be a digit.

RESERVED KEYWORDS

The following 44 keywords are reserved in C, each
having a specific meaning to the compiler, and must not
be used as identifiers:

auto extern break float case for char goto const if
continue inline default int do long double register else
restrict enum return short signed sizeof static struct
switch typedef union unsigned void volatile while
_Alignas _Alignof _Atomic _Bool _Complex _Generic
_Imaginary _Noreturn _Static_assert _Thread_local.

EXAMPLES

The following examples are valid identifiers:
üx
üdollar
üWhile
üerror_handler
üscale64
The following are not valid identifiers:
ü1st_rank switch y/n x-ray

MORE ON IDENTIFIERS

When choosing identifiers in your programs, remember
that many identifiers are already used by the C standard
library. These include the names of standard library
functions, which you cannot use for functions you define
or for global variables.

There is no limit on the length of identifiers. However,
most compilers consider only a limited number of
characters in identifiers to be significant : 31 or 63.

EXAMPLE
#include <stdio.h>
int main()
{

int firstNumber, secondNumber, sumOfTwoNumbers;

printf("Enter two integers: ");

// Two integers entered by user is stored using scanf()
function

scanf("%d %d", &firstNumber, &secondNumber);

// sum of two numbers in stored in variable sumOfTwoNumbers
sumOfTwoNumbers = firstNumber + secondNumber;

// Displays sum
printf("%d + %d = %d", firstNumber, secondNumber,

sumOfTwoNumbers);

return 0;
}

SCOPE AND BINDING

IDENTIFIER SCOPE

The scope of an identifier refers to that part of the
translation unit in which the identifier is meaningful. Or to
put it another way, the identifier’s scope is that part of
the program that can “see” that identifier.
The type of scope is determined by the location at which
you declare the identifier. Different kinds of scope are
possible:
üFile scope: If you declare an identifier outside all blocks and

parameter lists (functions), then it has file scope. You can
then use the identifier anywhere after the declaration and up
to the end of the translation unit.

IDENTIFIER SCOPE

Block scope: identifiers declared within a block have
block scope. You can use such an identifier only from its
declaration to the end of the smallest block
containing that declaration. The smallest containing
block is often, but not necessarily, the body of a function
definition.

IDENTIFIER

It is not possible to have two variables with the same
identifier with the same scope

int main() {
int a= 5;
float a= 6.5;

}

int main() {
int a= 5;
float a= 6.5;
int c= a + 1; // which a?

}

EXAMPLE 1

int p;

int fun2 (void)
{

int r= 3;
int s = r;
while(r != s)
{

r--;
}
return r;

}

p, fun2 r,s

File scope Block scope

BINDING

A binding (process) is an association between a name
and the thing it names. Binding time is the time at
which a binding is created or, more generally, the time at
which any implementation decision is made.

The textual region of the program in which a binding is
active is its scope.

In C the scope of a binding is determined statically, that
is, at compile time

Called static or dynamic scoping
üIn C we have static binding

EXAMPLE 2
int main()
{
{

int x = 10, y = 20;
{

printf("x = %d, y = %d\n", x, y);
{

int y = 40;
x++;
y++;

printf("x = %d, y = %d\n", x, y);
}

printf("x = %d, y = %d\n", x, y);
}

}
return 0;

}

x = 10, y = 20
x = 11, y = 41
x = 11, y = 20

EXAMPLE 3
int main()
{
int x = 1, y = 2, z = 3;
printf(" x = %d, y = %d, z = %d \n", x, y, z);
{

int x = 10;
float y = 20;
printf(" x = %d, y = %f, z = %d \n", x, y, z);
{

int z = 100;
printf(" x = %d, y = %f, z = %d \n", x, y, z);

}
}
return 0;

}

x = 1, y = 2, z = 3
x = 10, y = 20.000000, z = 3
x = 10, y = 20.000000, z = 100

SO

It is possible to use an identifier again in a new
declaration nested within its existing scope. If you do so,
then the new declaration must have block scope, and the
block must be a subset of the outer scope.

In such cases, the new declaration of the same identifier
hides the outer declaration, so that the variable or
function declared in the outer block is not visible in the
inner scope.

EXAMPLE

int main()
{
{

int x = 10;
}
{

printf("%d", x);
}
return 0;

}

Error: x is not accessible here

error: 'x' undeclared (first use in this function)

EXERCISE
#include <stdio.h>

int f1(void) ;
int f2(int x, int a) ;

int a ;

int main()
{

int a, b, c ;

a = 7 ;
b = f1() ;
c = f2(a, b) ;
printf("%d %d %d\n", a, b, c) ;

}

int f1(void)
{

a = 12 ;
printf("%d ", a) ;
return(a + 5) ;

}

int f2(int x, int a)
{

printf("%d ", a) ;
return(x * a) ;

}

What is the output? 12 17 7 17 119

EXAMPLE OF DYNAMIC BINDING

Perl’s keyword “my” defines a statically scoped local
variable, while the keyword “local” defines dynamically
scoped local variable.

A perl code to demonstrate
dynamic scoping
$x = 10;
sub f
{

return $x;
}
sub g
{

Since local is used, x uses
dynamic scoping.
local $x = 20;

return f();
}
print g()."\n";

Output:
20

HOW TO CHOOSE NAMES OF
IDENTIFIERS

A name conveys the identity of an object; it describes the
thing, indicates its behaviour and intended use.

A misnamed variable can be very confusing.

Do not create unnecessarily long variable name
Choose different names for different scopes in order to
avoid confusion

See the difference
üa = b * c;
üweekly_pay = hours_worked * pay_rate;

SU LIBRO

Pagina 46
Sezione 5.13

Pagina 346

