
PROGRAMMAZIONE
PROCEDURALE

A.A. 2023/2024

PROGRAMMING LANGUAGES

A programming language is a formal language that
specifies a set of instructions that can be used to
produce various kinds of output.

Programming languages generally consist of instructions
for a computer.
Programming languages can be used to create programs
that implement specific algorithms.

High level programming languages are considered high-
level because they are closer to human languages and
further from machine languages.

C IS IMPERATIVE

Programming paradigms are a way to classify
programming languages based on their features

C is imperative
üThe programmer instructs the machine how to change its

state

a = a + 1;

ASSEMBLY LANGUAGE

As people began to write larger programs, it quickly
became apparent that a less error-prone notation was
required.

Assembly languages were invented to allow operations
to be expressed with mnemonic abbreviations. Our GCD
program looks like this in x86 assembly language:

TO HIGH-LEVEL LANGUAGES

As computers evolved, and as competing designs
developed, it became increasingly frustrating to have to
rewrite programs for every new machine.

It also became increasingly difficult for human beings to
keep track of the wealth of detail in large assembly
language programs.

People began to wish for a machine-independent
language.

These wishes led in the mid-1950s to the development of
the original dialect of Fortran, the first arguably high-
level programming language.

Then Lisp and Algol.

COMPILER

Translating from a high-level language to assembly or
machine language is the job of a systems program
known as a compiler.

The compiler translates the high-level source program
into an equivalent target program (an assembly/machine
language)

At some arbitrary later time, the user tells the operating
system to run the target program.

gcc

A BIT OF C HISTORY

LET’S START WITH C

C is a high-level general-purpose, procedural
programming language. Dennis Ritchie first devised C in
the 1970s at AT&T Bell Laboratories in Murray Hill, New
Jersey, for the purpose of implementing the Unix
operating system and utilities with the greatest possible
degree of independence from specific hardware
platforms. The key characteristics of the C language are
the qualities that made it suitable for that purpose:
üSource code portability
üThe ability to operate “close to the machine”
üEfficiency
As a result, the developers of Unix were able to write
most of the operating system in C, leaving only a
minimum of system-specific hardware manipulation to be
coded in assembler.

C

C’s ancestors are the typeless programming languages
BCPL (the Basic Combined Programming Language),
developed by Martin Richards; and B, a descendant of
BCPL, developed by Ken Thompson.
A new feature of C was its variety of data types:
characters, numeric types, arrays, structures, and so on.
Brian Kernighan and Dennis Ritchie published an official
description of the C programming language in 1978.
Few hardware-dependent elements. For example, the C
language proper has no file access or dynamic memory
management statements. No input/output.
Instead, the extensive standard C library provides the
functions for all of these purposes.

VIRTUES OF C

Fast (it's a compiled language and so is close to the
machine hardware)

Portable (you can compile you program to run on just
about any hardware platform out there)

The language is small (unlike C++ for example)

Mature (a long history and lots of resources and
experience available)

There are many tools for making programming easier
(e.g. IDEs like Xcode)

You have direct access to memory

You have access to low-level system features if needed

CHALLENGES OF USING C

The language is small
It's easy to get into trouble, e.g. with direct memory
access & pointers

You must manage memory yourself
Sometimes code is more verbose than in high-level
scripting languages like Python, etc

STANDARDS

K & R C (Brian Kernighan and Dennis Ritchie)

ü1972 First created by Dennis Ritchie

ü1978 The C Programming Language described

ANSI C

ü1989 ANSI X.159-1989 aka C89 - First standardized version

ISO C

1990 ISO/IEC 9899:1990 aka C90 - Equivalent to C89

1995 Amendment 1 aka C95

1999 ISO/IEC 9899:1999 aka C99

2011 ISO/IEC 9899:2011 aka C11

2018 ISO/IEC 9899:2018 aka C18
gcc file.c –std=c11

DENNIS RITCHIE

HISTORY OF C++

In the early 1970s, Dennis Ritchie introduced “C” at Bell
Labs.
ühttp://cm.bell-labs.co/who/dmr/chist.html
As a Bell Labs employee, Bjarne Stroustrup was
exposed to and appreciated the strengths of C, but also
appreciated the power and convenience of higher-level
languages like Simula, which had language support for
object-oriented programming (OOP).
üOriginally called C With Classes, in 1983 it becomes C++
In 1985, the first edition of The C++ Programming
Language was released
Standard in 1998 (ISO/IEC 14882:1998)

http://cm.bell-labs.co/who/dmr/chist.html

HISTORY

Adding support for OOP turned out to be the right feature
at the right time for the ʽ90s. At a time when GUI
programming was all the rage, OOP was the right
paradigm, and C++ was the right implementation.

At over 700 pages, the C++ standard demonstrated
something about C++ that some critics had said about it
for a while: C++ is a complicated beast.

STROUSTRUP

STRUCTURE OF C PROGRAMS

THE STRUCTURE OF C PROGRAMS

The procedural building blocks of a C program are functions,
which can invoke one another.
Every function in a well-designed program serves a specific
purpose. Functions cannot be nested one into another.
The functions contain statements for the program to execute
sequentially, and statements can also be grouped to form
block statements, or blocks.
You can use the ready-made functions in the standard library
(printf()), or write your own.
Every C program must define at least one function of its own,
with the special name main(): this is the first function invoked
when the program starts. The main() function is the
program’s top level of control, and can call other functions as
subroutines.

PROCEDURAL PROGRAMMING

Procedural programming is a programming paradigm,
derived from structured programming, based on the
concept of the procedure call.

Procedures, also known as routines, subroutines, or
functions, simply contain a series of computational steps
to be carried out.

Other paradigms? Object-oriented (Java), Functional,
etc…

C is imperative and procedural
üInstructions are grouped into functions

EXAMPLE

#include <stdio.h>
void myPrintHello();

int main() {
myPrintHello();
return(0);

}

void myPrintHello(void) {
printf("Hello!\n");
return;

}

mainfile.c

gcc -o mainfile mainfile.c gcc mainfile.c

Target program a.out

MODULAR PROGRAMMING

Modular programming is a software design technique
that emphasizes separating the functionality of a
program into independent, interchangeable modules,
such that each contains everything necessary to execute
only one aspect of the desired functionality.

For example, separate code in to different files:
mainfile.c and hello.c

EXAMPLE

int main() {
myPrintHello();
return(0);

}

mainfile.c

gcc -o executable mainfile.c hello.c

#include <stdio.h>

void myPrintHello(void) {
printf("Hello!\n");
return;

}

hello.c

STACK OF INTERPRETATION

Processor

Machine language

Assembly language

C language

FROM THE BEGINNING TO THE END
#include <stdio.h>

int main(){

int a, b;
printf("Enter first positive integer: \n");

scanf("%d", &a);

printf("Enter second positive integer: \n");
scanf("%d", &b);

while(b != 0) {

if(a > b)
a = a - b;

else

b = b - a;
}

printf("GCD = %d\n", a);

return 0;
}

SOME MORE WORDS ON
PROGRAMMING

LIFE OF A PROGRAMMER

Run-time: when you run a program

Compile-time: when you run gcc

DIFFERENT KINDS OF ERRORS

A compile time error is an error that is detected by
the compiler. Common causes for compile time
errors include: Syntax errors such as missing semi-
colon or use of a reserved keyword (such as “while”).

A runtime error is a program error that occurs while the
program is running. The term is often used in contrast to
other types of program errors, such as
syntax errors and compile time errors. There are many
different types of runtime errors.

COMPILE-TIME

MacBook-Francesco:ProgrammI francescosantini$ gcc -o euclid
euclid.c
euclid.c:9:20: error: expected ';' after expression

scanf("%d", &b)
^
;

1 error generated.

#include <stdio.h>

int main(){

int a, b;

printf("Enter first positive integer: \n");

scanf("%d", &a);

printf("Enter first positive integer: \n");

scanf("%d", &b)

while(b != 0) {

if(a > b)

a = a - b;

else

b = b - a; }

printf("GCD = %d\n", a);
}

RUN-TIME

MacBook-Francesco:ProgrammI francescosantini$ gcc -o
runtime_error runtime_error.c
MacBook-Francesco:ProgrammI francescosantini$
./runtime_error
Segmentation fault: 11

#include <stdio.h>
int main()
{

int *a= NULL;

printf("%d", *a);

int i= 0;
while (i < 4) {

printf("Hello World");
i++;

}

return 0;
}

YOU NEED TO

You need to understand the output of the compiler to
remove all compile-time errors

But it is not over: you need to extensively test the
program with different inputs, and remove all (”as more
as possible”) run-time errors

“Testing shows the presence, not the absence of bugs” [Djikstra]

WARNINGS

OTHER PARADIGMS

INTERPRETED LANGUAGES

An alternative style (w.r.t. compilation) of implementation
for high-level languages is known as interpretation.

Unlike a compiler, an interpreter stays around for the
execution of the application.

The interpreter implements a virtual machine whose
“machine language” is the high-level programming
language.

AN EXAMPLE WITH PYTHON

print(“Hello World”)

helloworld.py

MacBook-Francesco:~ francescosantini$ python3 helloworld.py
Hello World

DIFFERENCES

We say that a language is compiled if the translator
analyzes it thoroughly (rather than effecting some
“mechanical” transformation), and if the intermediate
program does not bear a strong resemblance to the
source.
üThese two characteristics—thorough analysis and nontrivial

transformation—are the hallmarks of compilation

DIFFERENCES

Certain languages (e.g., Python) are sometimes referred
to as “interpreted languages” because most of their error
checking must be performed at run time.

Certain other languages (e.g., C and C++) are
sometimes referred to as “compiled languages” because
almost all of their semantic error checking can be
performed at compile time.

SU LIBRO

Sezione 1.9. Rivedremo bene i concetti in 1.9.2-1.9.7
alla fine del corso.

Sezione 2.1-2.3.

