
PROGRAMMAZIONE
PROCEDURALE

A.A. 2023/2024

STEPS OF GCC

STEPS

Preprocessor Compiler

Assembler

file.c

Linker

file1.o
file2.o

fileexecutable

PREPROCESSOR

PREPROCESSOR

The C preprocessor is a macro processor that is used
automatically by the C compiler to transform your program
before actual compilation. It is called a macro processor
because it allows you to define macros, which are brief
abbreviations for longer constructs.
The C preprocessor provides four separate facilities that you
can use as you see fit:
Inclusion of header files. These are files of declarations that
can be substituted into your program.
Macro expansion. You can define macros, which are
abbreviations for arbitrary fragments of C code, and then the
C preprocessor will replace the macros with their definitions
throughout the program.
Conditional compilation. Using special preprocessing
directives, you can include or exclude parts of the program
according to various conditions.

INCLUDE

An #include directive instructs the preprocessor to insert
the contents of a specified file in the place of the
directive.
ü#include <filename>
ü #include "filename"
Use the first form, with angle brackets, when you include
standard library header
ü#include <math.h> // Prototypes of mathematical functions,

// with related types and macros.
Use the second form, with double quotation marks, to
include source files specific to your programs.
ü#include "myproject.h"

WHERE TO FIND HEADER FILES

For files specified between angle brackets (<filename>),
the preprocessor usually searches in certain system
directories, such as /usr/local/include and /usr/include on
Unix systems, for example.
For files specified in quotation marks ("filename"), the
preprocessor usually looks in the current directory first,
which is typically the directory containing the program’s
other source files.
If such a file is not found in the current directory, the
preprocessor searches the system include directories as
well.
A filename may contain a directory path. If so, the
preprocessor looks for the file only in the specified
directory.

DEFINING AND USING MACROS

You can define macros in C using the preprocessor
directive #define.

A common use of macros is to define a name for a
numeric constant:
ü#define ARRAY_SIZE 100

double data[ARRAY_SIZE];

The preprocessor expands the macro; that is, it replaces
the macro name with the text it has been defined to
represent

ARRAY_SIZE is replaced
with 100

USING MACROS WITH MACROS

No macro can be expanded recursively

#define PI 3.141593
#define A (A / 8)

PREPROCESSING

Before submitting the source code to the actual compiler,
the preprocessor remove comments, executes directives
and expands macros in the source files.

GCC ordinarily leaves no intermediate output file
containing the results of this preprocessing stage.
However, you can save the preprocessor output for
diagnostic purposes by using the -E option, which directs
GCC to stop after preprocessing.

The preprocessor output is directed to the standard
output stream, unless you indicate an output filename
using the -o option:
ügcc -E -o mylibrary.i mylibrary.c

COMPILER

ASSEMBLY

At the heart of the compiler’s job is the translation of C
programs into the machine’s assembly language.

Assembly language is a “human-readable” programming
language that correlates closely to the actual machine
code.
Consequently, there is a different assembly language for
each CPU architecture.

Ordinarily GCC stores its assembly-language output in
temporary files, and deletes them immediately after the
assembler has run.

-S

You can use the -S option to stop the compiling process
after the assembly-language output has been generated.

If you do not specify an output filename, GCC with the -S
option creates an assembly-language file with a name
ending in .s for each input file compiled.
gcc –S file.c
The compiler preprocesses file.c and translates it into
assembly language, and saves the results in the file
file.s.

EXAMPLE

int main()
{

int a= 5;
a++;

}

.section __TEXT,__text,regular,pure_instructions
.macosx_version_min 10, 11
.globl _main
.align 4, 0x90

_main: ## @main
.cfi_startproc

BB#0:
pushq %rbp

Ltmp0:
.cfi_def_cfa_offset 16

Ltmp1:
.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp2:
.cfi_def_cfa_register %rbp
xorl %eax, %eax
movl $5, -4(%rbp)
movl -4(%rbp), %ecx
addl $1, %ecx
movl %ecx, -4(%rbp)
popq %rbp
retq
.cfi_endproc

.subsections_via_symbols

ASSEMBLER

ASSEMBLER

Because each machine architecture has its own
assembly language, GCC invokes an assembler on the
host system to translate the assembly-language program
into executable binary code.

The result is an object file, which contains the machine
code to perform the functions defined in the
corresponding source file, and also contains a symbol
table describing all objects in the file that have
external linkage.

COMPILING AND LINKING SEPARAT.

If you invoke GCC to compile and link a program in one
command, then its object files are only temporary, and
are deleted after the linker has run.

Most often, however, compiling and linking are done
separately. The -c option instructs GCC not to link the
program, but to produce an object file with the filename
ending .o for each input file:

$ gcc –c mylibrary.c

LINKING

LINKING

The linker joins a number of binary object files into a
single executable file.

In the process, it has to complete the external references
among your program’s various modules by substituting
the final locations of the objects for the symbolic
references.

The linker does this using the same information that the
assembler provides in the symbol table.

Furthermore, the linker must also add the code for any C
standard library functions you have used in your
program.

STEPS

Preprocessor Compiler

Assembler

file.c file.i

file.s file.o Linker

file1.o
file2.o

fileexecutable

GDB

GDB

If the GNU C compiler, GCC, is available on your
system, then GDB is probably already installed as well.
ügdb -version

GNU gdb (GDB) 7.10
Copyright (C) 2015 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-apple-darwin15.0.0".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word".

SYMBOLS

GDB is a symbolic command line debugger. “Symbolic”
here means that you can refer to variables and functions
in the running program by the names you have given
them in your C source code.

In order to display and interpret these names, the
debugger requires information about the types of the
variables and functions in the program, and about which
instructions in the executable file correspond to which
lines in the source files.

a symbol table, which the compiler and linker include in
the executable file when you run GCC with the -g option:
ügcc –g -o test test.c

EXAMPLE
#include<stdio.h>

int main()
{

int a[]= {6,5,4,3,2};
for (int i= 0; i < sizeof(a) / sizeof(int); i++) {

if(a[i] > a[i+1])
continue;

puts("Errore");
break;

}
return 0;

}

test.c

MacBook-Francesco:ProgrammI francescosantini$ gcc -g -o test test.c
MacBook-Francesco:ProgrammI francescosantini$./test
Errore

EXAMPLE

MacBook-Francesco:ProgrammI francescosantini$ gdb test

(gdb) l
1 #include<stdio.h>
2
3 int main()
4 {
5 int a[]= {6,5,4,3,2};
6
7 for (int i= 0; i < sizeof(a) / sizeof(int); i++) {
8
9 if(a[i] < a[i+1])
10 continue;
(gdb)

You can start by entering the command list, or just its initial l for
short, to list a few lines of source code of the program you are
debugging.

10
 li

ne
s

by
 d

ef
au

lt,
 l

ag
ai

n

HOW TO WORK WITH IT

Before you instruct GDB to run the program, you should
tell it where you want it to stop.

You can do this by setting a breakpoint.

When the debugger reaches the breakpoint, it interrupts
the execution of your program, giving you an opportunity
to examine the program’s state at that point.

Furthermore, once the program has been interrupted at a
breakpoint, you can continue execution line by line,
observing the state of program objects as you go.

To set a breakpoint, enter the command break, or b for
short. Breakpoints are usually set at a specific line of
source code or at the beginning of a function.

EXAMPLE
(gdb) l
1 #include<stdio.h>
2
3 int main()
4 {
5 int a[]= {6,5,4,3,2};
6
7 for (int i= 0; i < sizeof(a) / sizeof(int); i++) {
8
9 if(a[i] > a[i+1])
10 continue;
(gdb) b 7
Breakpoint 1 at 0x100000ecc: file test.c, line 7.
(gdb) r
Starting program: /Users/francescosantini/Desktop/ProgrammI/test

Breakpoint 1, main () at test.c:7
7 for (int i= 0; i < sizeof(a) / sizeof(int); i++) {

EXAMPLE

Upon reaching the breakpoint, the debugger interrupts
the execution of the program and displays the line
containing the next statement to be executed.

For this purpose, GDB provides the commands next, or
n, and step, or s. The next and step commands behave
differently if the next line to be executed contains a
function call.

The next command executes the next line, including all
function calls, and interrupts the program again at the
following line.

The step command, on the other hand, executes a jump
to the function called in the line, and interrupts the
program again at the first statement in the function body.

PRINT VARIABLES

At this point we can check to see whether the values of
the variables are correct. We can do this using the print
command (p for short), which displays the value of a
given expression:

(gdb) s
9 if(a[i] > a[i+1])
(gdb) p a[i]
$1 = 6
(gdb) p a[i+1]
$2 = 5
(gdb) p a[i+2]
$3 = 4

$number is a GDB
variable that the debugger
creates.

EXAMPLE
Breakpoint 1, main () at test.c:7
7 for (int i= 0; i < sizeof(a)/ sizeof(int); i++) {
(gdb) n
9 if(a[i] > a[i+1])
(gdb) n
10 continue;
(gdb) n
7 for (int i= 0; i < sizeof(a)/ sizeof(int); i++) {
(gdb) n
9 if(a[i] > a[i+1])
(gdb) n
10 continue;
(gdb) n
7 for (int i= 0; i < sizeof(a)/ sizeof(int); i++) {
(gdb) n
9 if(a[i] > a[i+1])
(gdb) n
10 continue;
(gdb) n
7 for (int i= 0; i < sizeof(a)/ sizeof(int); i++) {
(gdb) n
9 if(a[i] > a[i+1])
(gdb) n
10 continue;

EXAMPLE

(gdb) n
7 for (int i= 0; i < sizeof(a) / sizeof(int); i++) {
(gdb) n
9 if(a[i] > a[i+1])
(gdb) n
12 puts("Errore");
(gdb) p a[i]
$2 = 2
(gdb) p a[i+1]
$3 = 32767
(gdb) p i
$4 = 4

6 5 4 3 2 32767

int a[]= {6,5,4,3,2}

LAST COMMANDS

The command continue, abbreviated c, lets program
execution continue until it reaches the next breakpoint or the
end of the program.
To stop gdb, enter the command quit or q.
info breakpoints, delete breakpoints

(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000100000f01 in main at test.c:10

breakpoint already hit 3 times
(gdb) d 1
(gdb) c
Continuing.
Errore

SU LIBRO

Sezioni 1.2, 1.4, 1.9.2-1.9.7
Capitolo 14

Appendice G

