
PROGRAMMAZIONE
PROCEDURALE

A.A. 2023/2024



A pointer is a variable whose value is the address of another 
variable, i.e., direct address of the memory location.



DECLARING POINTERS



POINTERS

A pointer represents both the address and the type of an 
object. If an object or function has the type T, then a 
pointer to it has the derived type “pointer to T”. 

For example, if var is a float variable, then the 
expression &var—whose value is the address of the 
float variable—has the type pointer to float, or in C 
notation, the type float *. 
Because var doesn’t move around in memory, the 
expression &var is a constant pointer. 
The declaration of a pointer to an object that is not an 
array has the following syntax: 

type * [type-qualifier-list] name [= initializer]; 



THE & OPERATOR 

The address operator & yields the address of its 
operand. If the operand x has the type T, then the 
expression &x has the type “pointer to T” 

The operand of the address operator must have an 
addressable location in memory: the operand must 
designate either a function or an object (i.e., an lvalue) 
that is not a bit-field.

You need to obtain the addresses of objects and 
functions when you want to initialize pointers to them: 

float x, *ptr; 
ptr = &x; 
ptr = &(x+1); 

// OK: Make ptr point to x. 
// Error: (x+1) is not an lvalue. 



THE INDIRECTION OPERATOR *

Conversely, when you have a pointer and want to access 
the object it references, use the indirection operator *, 
which is sometimes called the dereferencing operator. 
Its operand must have a pointer type. 

If ptr is a pointer, then *ptr designates the object or 
function that ptr points to. 

If ptr is an object pointer, then *ptr is an lvalue, and you 
can use it as the left operand of an assignment operator: 

float x, *ptr = &x; 
*ptr = 1.7
++(*ptr); 

// Assign the value 1.7 to the variable x 
// and add 1 to it. 



INDIRECTION AND ARITHMETIC

Asterisk * with one operand is the dereference or indirection 
operator, and with two operands, it is the multiplication sign. 

In each of these cases, the unary operator has higher 
precedence than the binary operator. For example, the 
expression *ptr1 * *ptr2 is equivalent to (*ptr1) * (*ptr2). 
Look at the operator precedence/associativity table



QUESTION

Given
üint *p;
What is its type of p?
üint?

NO: its type is “pointer to int” or int*



IN MEMORY

The addresses shown are purely fictitious examples. 

… 77 1000 …

1000 1004

iVar iPtrVariable

Value in memory

Address

int iVar = 77;
int *iPtr = &iVar; 



PRINT POINTERS

It is often useful to output addresses for verification and 
debugging purposes. 
üThe printf( ) functions provide a format specifier for pointers: 

%p. 

The size of a pointer in memory—given by the 
expression sizeof(iPtr), for example—is the same 
regardless of the type of object addressed. 

8 byte(?)

printf( "Value of iPtr (i.e. the address of iVar): %p\n"
"Address of iPtr:                          %p\n", iPtr, &iPtr );



NULL POINTERS

A null pointer constant is an integer constant expression 
with the value 0.

The macro NULL is defined in stdlib.h.

A null pointer is always unequal to any valid pointer to an 
object or function. 



EXAMPLE

Initialization
üint *p = NULL;

#include <stdlib.h>

int main() {
int a= 3;
int* p= NULL;
*p= 6;

}

Segmentation fault

#include <stdio.h>

int main() {
int a= 3;
int* p= &a;
*p= 6;

}



VOID POINTERS

A pointer to void, or void pointer for short, is a pointer 
with the type void *. 

As there are no objects with the type void, the type void * 
is used as the all-purpose pointer type. 
üA void pointer can represent the address of any object—but 

not its type. 
To access an object in memory, you must always convert 
a void pointer into an appropriate object pointer. 

void* pA= NULL;
int p= 10;
pA= &p;

printf("%d", *((int*) pA));



POINTERS TO POINTERS

A pointer variable is itself an object in memory, which 
means that a pointer can point to it. 

To declare a pointer to a pointer, you must use two 
asterisks 
üchar c = 'A', *cPtr = &c, **cPtrPtr = &cPtr; 
The expression *cPtrPtr now yields the char pointer cPtr, 
and the value of **cPtrPtr is the char variable c. 

‘A’&c&cPtr

ccPtrcPtrPtr



EXAMPLE

int main(){  
int a= 2, *p= &a;
printf("%d %d\n", *p, *&*&a);    
printf("%p %p\n", p, &*&a);

}

The address of a is 0x7fff4fca4acc

MacBook-Francesco:ProgrammI francescosantini$ ./main
2 2
0x7fff4fca4acc 0x7fff4fca4acc



OPERATIONS WITH POINTERS



READ AND MODIFY

If ptr is a pointer, then *ptr designates the object (or 
function) that ptr points to. 

The type of the pointer determines the type of object that 
is assumed to be at that location in memory. 

For example, when you access a given location using an 
int pointer, you read or write an object of type int. 



EXAMPLES

double x, y, *ptr; // Two double variables and a pointer to double.
ptr = &x; // Let ptr point to x.
*ptr = 2.5; // Assign the value 2.5 to the variable x.
*ptr *= 2.0; // Multiply x by 2.
y = *ptr + 0.5; // Assign y the result of the addition x + 0.5.

x is equal to 5.0
y is equal to 5.5



QUESTIONS

int a= 3; int* p= &a;
üIs “a” an lvalue?
üIs “p” an lvalue?
üIs “*p” an lvalue?
üIs “&a” an lvalue?

Yes

Yes

Yes

No

… 3 1000 1000

a p

1000 1004

q

1012

int a= 3;
int* q= &a, 
int *p = q;

&a == 1000



OPERATIONS

The most important of these operations is accessing the 
object that the pointer refers to

You can also 
ücompare pointers, and 
üuse them to iterate through a memory block

Pointer arithtmetics



POINTER ARITHMETICS

When you perform pointer arithmetic, the compiler 
automatically adapts the operation to the size of the 
objects referred to by the pointer type. 

You can perform the following operations on pointers to 
objects: 
üAdding an integer to, or subtracting an integer from, a 

pointer. 
üSubtracting one pointer from another. 
üComparing two pointers. 



EXAMPLE ON COMPARING

int main() {
int a= 5;
int *p= &a;
int *q= &a;

if (p == q)
printf(“The two pointers are the same”);

}

Comparison (== and !=) is used to check if two pointers point to the same
location of memory



ARITHMETIC AND ARRAY 
OPERATIONS

The three pointer operations described here are generally 
useful only for pointers that refer to the elements of an array. 
To illustrate the effects of these operations, consider two 
pointers p1 and p2, which point to elements of an array a: 
üIf p1 points to the array element a[i], and n is an integer, then the 

expression p2 = p1 + n makes p2 point to the array element a[i+n]
(assuming that i+n is an index within the array a). 

üThe subtraction p2 – p1 yields the number of array elements 
between the two pointers, with the type ptrdiff_t. The type ptrdiff_t
is defined in the header file stddef.h, usually as int. After the 
assignment p2 = p1 + n, the expression p2 – p1 yields the value of 
n. 

üThe comparison p1 < p2 yields true if the element referenced by 
p2 has a greater index than the element referenced by p1. 
Otherwise, the comparison yields false. 



EXAMPLE
// Initialize an array and a pointer to its first element. 
int dArr[5] = { 2, 1, 6, 3, 4 }; 
int *dPtr = dArr; 

int i = 0; 
dPtr = dPtr + 1; 
dPtr = 2 + dPtr; 

printf( "%d\n", *dPtr );
printf( "%d\n", *(dPtr -1) );

i = dPtr - dArr;

printf( ”%d\n", i ); 

2 1 6 3 4

dA
rr

dP
tr

dP
tr

dP
tr

3
6
3



CONSIDERATIONS ON THE EXAMPLE

The statement dPtr = dPtr + 1; adds the size of one array 
element to the pointer, so that dPtr points to the next 
array element, dArr[1]. 

Because dPtr is declared as a pointer to int, its value is 
increased by sizeof(int). 
Subtracting one pointer from another yields an integer 
value with the type ptrdiff_t. The value is the number of 
objects that fit between the two pointer values. 
üThe type ptrdiff_t is defined in the header file stddef.h, 

usually as int. 



MORE ON ARRAYS

Because the name of an array is implicitly converted into 
a pointer to the first array element wherever necessary, 
you can also substitute pointer arithmetic for array 
subscript notation: 

üThe expression a + i is a pointer to a[i], and the value of 
*(a+i) is the element a[i]. 

üArrays “do not exist in C”: they are just pointers



L VALUES AND POINTERS

The operators that yield an lvalue include the subscript 
operator [] and the indirection operator * 

int* ptr…



ONE MORE EXAMPLE
#include <stdio.h>

int main()
{

// Initialize an array and a pointer to its first element.
int dArr[5] = { 2, 1, 6, 3, 4 }, *dPtr = dArr;

int i = 0;
dPtr = dPtr + 1;
printf("dArr %p\n", dArr);
printf(”dPtr %p\n", dPtr);
dPtr = 2 + dPtr;
printf(”dPtr %p\n", dPtr);

}

dArr 0x7fff56845b19

dPtr 0x7fff56845b1d

dPtr 0x7fff56845b25



AN ADVANCED EXAMPLE

int main() {
short int a[4]= {1,3,[3]=1}; 
int *p = (int*) a;

printf("*a is equal to %d\n", *a);
printf("*p==0 %d\n", *p== 0);
printf("p == a %d\n", p == a);
printf("*(a+2) == 0 %d\n", *(a+2) == 0);
printf("*(p+1)== 65536 %d\n", *(p+1) == 65536);
printf("&a[3] > (p + 1) %d\n", &a[3] > p+1);
printf("%ld\n", (a+2) - &a[0]);
printf("%d\n", ((int) (a+2)) - (int) (&a[0]) );

}
00000000

10000000

00000000

00000000

11000000

00000000

10000000

00000000

Little endian

A short int is 2 bytes, an int is 4 bytes

*p

*a

1x 216 + 1 x 217+ 1 x 20 = 196609

p == a == &a[0]

a + 2

*(a+2)

p + 1

*(p + 1)

&a[3]

*a == a[0]

1000

1001

1002

1003

1004

1005

1006

1007

1008



EXAMPLE int main() {
short int a[4]= {1,3,[3]=1}; 
int *p = (int*) a;

printf("*a is equal to %d\n", *a);
printf("*p == 0 %d\n", *p== 0);
printf("p == a %d\n", p == a);
printf("*(a+2)= %d\n", *(a+2) == 0);
printf("*p == 65536 %d\n", *(p+1) == 65536);
printf("&a[3] > (p+1) %d\n", &a[3]> (p+1));
printf("%ld\n", (a+2) - &a[0]);
printf("%d\n", ((int) (a+2)) - (int) (&a[0]) );

}

MacBook-Francesco:esercizi francescosantini$ ./main
*a is equal to 1
*p == 0 0
p == a 1
*(a+2)== 0 1
*p == 65536 1
&a[3] > (p+1) 1
2
4



CONST POINTERS AND
POINTERS TO CONST



CONSTANT POINTERS AND 
POINTERS TO CONSTANT VARS

It is possible to also define constant pointers.
When you define a constant pointer, you must also 
initialize it, because you can’t modify it later. 

int var, var2;                 // Two objects with type int.
int *const c_ptr = &var; // A constant pointer to int.
*c_ptr = 123;            // OK: we can modify the object referenced, but ...
c_ptr= &var2;                 // error: we can't modify the pointer.



POINTERS TO CONST

You can modify a pointer that points to an object that has 
a const-qualified type (also called a pointer to const). 

However, you can use such a pointer only to read the 
referenced object, not to modify it 
üFor this reason, pointers to const are commonly called “read-

only pointers.

You can use them if you want to be sure to not modify a 
variable through its pointer



EXAMPLE

int var; // An object with type int.

const int c_var = 100; // A constant int object.
const int *ptr_to_const; // A pointer to const int:

// the pointer itself is not constant!

ptr_to_const = &c_var; // OK: Let ptr_to_const point to c_var.

var = 2 * *ptr_to_const; // OK. Equivalent to: var = 2 * c_var;

ptr_to_const = &var; // OK: Let ptr_to_const point to var.

if ( c_var < *ptr_to_const ) // OK: "read-only" access.
*ptr_to_const = 77;      // Error: we can't modify var using

// ptr_to_const, even though var is
// not constant.

The assignment ptr_to_const = &var entails an implicit conversion: the int
pointer value &var is automatically converted to the left operand’s type, pointer 
to const int. 



ONE MORE EXAMPLE
If you want to convert a pointer into a pointer to a less-
qualified type, you must use an explicit type conversion. 

int var; 
const int c_var = 100, *ptr_to_const;

int *ptr = &var; // An int pointer that points to var.
*ptr = 77; // OK: ptr is not a read-only pointer.
ptr_to_const = ptr; // OK: implicitly converts ptr from "pointer to int”

// into "pointer to const int".

*ptr_to_const = 77; // Error: can't modify a variable through a read-only 
// pointer.

ptr = &c_var; // Error: can't implicitly convert "pointer to const
// int" into "pointer to int".

ptr = (int *) &c_var; // OK: Explicit pointer conversions are always
// possible.



SU LIBRO

Sezioni 7.1-7.3, 7.5, 7.8, 7.9, 7.10


