
PROGRAMMAZIONE
PROCEDURALE

A.A. 2023/2024

FUNCTIONS

INTRODUCTION AND MAIN

All the instructions of a C program are contained in
functions.
üC is a procedural language
üEach function performs a certain task
A special function name is main(): the function with this
name is the first one to run when the program starts.

The first command executed in your program is the first
command in main (top to bottom)

All other functions are subroutines of the main() function
can have any names you wish.
Every function is defined exactly once. A program can
declare and call a function as many times as necessary.

FUNCTION DEFINITION

The definition of a function consists of a function head
(or the declarator), and a function block.

The function head specifies the name of the function, the
type of its return value, and the types and names of its
parameters, if any.
The statements in the function block specify what the
function does.

type function_name (type parameter_name1, type parameter_name2,…) {

//statements;
}

FUNCTION RETURN

Always write the return-value type
üIt is int if not specified

FUNCTION DECLARATION

By declaring a function before using it, you inform the
compiler of its type: in other words, a declaration
describes a function’s interface

A declaration defines the type of a function
üThe number and types of its parameters
üThe type of what returned
The identifiers of the parameters in a function declaration
are optional. If you include the names, their scope ends
with the prototype itself

type function_name (type parameter_name1, type parameter_name2,…);

type function_name (type, type,…);
Both valid declarations

IDENTIFIER SCOPE 2

Block scope: identifiers declared within a block have
block scope. You can use such an identifier only from its
declaration to the end of the smallest block containing
that declaration. The smallest containing block is often,
but not necessarily, the body of a function definition. In
C11, declarations do not have to be placed before all
statements in a function block. The parameter names
in the head of a function definition also have block
scope, and are valid within the corresponding function
block.
Function prototype scope: The parameter names in a
function prototype have function prototype scope.
Because these parameter names are not significant
outside the prototype itself, they are meaningful only as
comments, and can also be omitted.

EXAMPLE 1
int p;

int fun1 (int q);

int fun2 (int r)
{

int s = r + 3;
while(r != s)

r--;
}

p, fun1, fun2 q r,s

File scope Block scope
Function prototype scope

FUNCTION PARAMETERS

The parameters of a function are ordinary local variables
The program creates them, and initializes them with the
values of the corresponding arguments, when a function
call occurs.

Their scope is the function block (block scope).

long double factorial(unsigned int n)
{

long double f = 1;
while (n > 1)

f *= n--;
return f;

}

DECLARATION AND DEFINITION

A function definition is also a function declaration

int fun2 (int);

int main() {
int a= 5;
a= fun2(a);

}

int fun2 (int r) {
int s = r + 5;
while(r != s)

r--;
return r;
}

int fun2 (int r) {
int s = r + 5;
while(r != s)

r--;
return r;

}

int main() {
int a= 5;
//commands
a= fun2(a);

}

=

SO

Before calling (using) a function you need to declare it
üYou can declare all the functions at the top of the file, and

define them in any order below in the same file
üOtherwise you can avoid declaring function at the top, but

you need to define them before they the are called

A function needs also to be defined, otherwise you do
not know hat to do when it is called

In the same file, you cannot have two definitions of
functions with the same header and identifier (name)

EXAMPLE
int fun1 (int);
int fun2 (int);

int main() {
int a= 5;
a= fun1(a);

}

int fun1(int q) {
return (fun2(q)+1);

}

int fun2 (int r) {
int s = r + 5;
while(r != s)

r--;
return r;

}

int fun2 (int r) {
int s = r + 5;
while(r != s)

r--;
return r;

}

int fun1(int q) {
return (fun2(q)+1);

}

int main() {
int a= 5;
a= fun1(a);

}

EXAMPLE
int fun1 (int);

int main() {
int a= 5;
a= fun1(a);

}

int fun1 (int q) {
return (fun2(q)+1);

}

int fun2 (int r) {
int s = r + 5;
while(r != s)

r--;
return r;

}

int fun1 (int);
int fun2 (int);

int main() {
int a= 5;
a= fun1(a);

}

int fun1 (int q) {
return (fun2(q)+1);

}

int fun2 (int r) {
int s = r + 5;
while(r != s)

r--;
return r;

}

RETURN
The return statement ends execution of the current
function, and jumps back to where the function was
called:

return [expression];
expression is evaluated and the result is given to the
caller as the value of the function call.

This return value is converted to the function’s return
type, if necessary.
A function can contain any number of return statements
üThe first return executed exits from a function
Return is an unconditional jump statement (as goto)

EXAMPLE

// Return the smaller of two integer arguments.
int min(int a, int b)
{

if (a < b)
return a;

else
return b;

}

int main()
{

int a= 5;
int b= 6;
int c= min(a ,b);
printf(“%d”, c);

}

5

RETURN (2)

A return statement with no expression can only be used
in a function of type void. In fact, such functions do not
need to have a return statement at all

If no return statement is encountered in a function, the
program flow returns to the caller when the end of the
function block is reached

MAIN

MAIN() FUNCTION

You can define the main() function in one of the
following two forms:

int main(void) { /* ... */ }
A function with no parameters, returning int

int main(int argc, char *argv[]) { /* ... */ }
A function with two parameters whose types are int and
char **, returning int

PARAMETERS OF MAIN()

The parameters argc and argv (which you may give other
names if you wish) represent your program’s command-line
arguments. This is how they work:
argc (short for “argument count”) is either 0 or the number of
string tokens in the command line that started the program.
The name of the program itself is included in this count.
argv (short for “arguments vector”) is an array of pointers to
char that point to the individual string tokens received on the
command line:
üThe number of elements in this array is one more than the value of

argc; the last element, argv[argc], is always a null pointer.
üThe first string, argv[0], contains the name by which the program

was invoked. If the execution environment does not supply the
program name, the string is empty.

üIf argc is greater than 1, then the strings argv[1] through argv[argc -
1] contain the program’s command line arguments.

A CLASSICAL EXAMPLE
#include <stdio.h>
int main(int argc, char *argv[])
{

if (argc == 0)
puts("No command line available.");

else {

printf("The program now running: %s\n", argv[0]); // Print the name of the
// program.

if (argc == 1)
puts("No arguments received on the command line.");

else {
puts("The command line arguments:");
for (int i = 1; i < argc; ++i) // Print each argument on

// a separate line.
puts(argv[i]);

}
}

}

OUTPUT FOR THE EXAMPLE

Suppose we run the program on a Unix system by
entering the following command line:
ü$./args one two "and three"
The output is then as follows:

The program now running: ./args
The command line arguments:
one
two
and three

RETURN OF MAIN

The value returned by main is a value that is passed to
the parent process that executed it (e.g., the shell)

The return value for main should indicate how the
program exited. Normal exit is generally represented by
a 0 return value from main.
Abnormal termination is usually signalled by a non-zero
return

HOW FUNCTIONS ARE
EXECUTED

RETURNING FROM A FUNCTION

If the program reaches a return statement or the closing
brace } of the function block, execution of the function
ends, and the program jumps back to the calling
function.

If the program “falls off the end” of the function by
reaching the closing brace, the value returned to the
caller is undefined.

For this reason, you must use a return statement to
stop any function that does not have the type void. The
value of the return expression is returned to the calling
function.

CALL A FUNCTION

The instruction to execute a function—the function call—
consists of the function’s name and the operator ()
For example, the following statement calls the function
maximum() to compute the maximum of two numbers
ümaximum(a, b);
The program first allocates storage space for the
parameters, then copies the argument values to the
corresponding locations.

Then the program jumps to the beginning of the function,
and execution of the function begins with first variable
definition or statement in the function block.

EXAMPLE

#include <stdio.h>

int sum(int p, int q) {
int r= 0;
r= p + q;
return r;

}

int main(void) {
int i =3, j =5, int s= 0;
s= sum(i, j);
printf(”%d\n”, s);
return 0;

}

8

p

q

3

5

r

Memory

0

i and j are passed by value!

8

3

5

i

j

s 08

FORMAL AND ACTUAL PARAMETERS

When a function is called, the values (expressions) that
are passed in the call are called the arguments or actual
parameters (both terms mean the same thing).

At the time of the call each actual parameter is assigned
to the corresponding formal parameter in the function
definition.

p and q are formal parameters in the example before, the
value of i and j are the actual parameters.

VARIABLE ALLOCATION

Memory allocation means that part of the memory is
reserved, for instance for a variable

Automatic variable is a local variable which is allocated
and deallocated automatically when program flow enters
and leaves the variable's scope
By memory deallocation we mean that part of the
memory is no longer reserved, for that variable

Variables p and q are allocated when the function is
called, deallocated when we exit from the function

OVERLOADING OF FUNCTIONS

NOT POSSIBLE IN C!

Function overloading is a feature of a programming
language that allows one to have many functions with
same name but with different signatures (parameters’
type and return type)
üThis feature is present in most of the Object Oriented

Languages such as C++ and Java
üBut C doesn’t support this feature
To overload a function, in C++ you can define it several
times, each uniquely identified by the type of the
arguments it accepts; return type is not considered

EXAMPLE #include<stdio.h>

int min(int x, int y) {
return (x < y ? x : y);}

float min(float x, float y) {
return (x < y ? x : y);

}

int main() {
int a= min(4, 1);
float b= min(4.56F, 1.23F);

}

MacBook-Francesco:ProgrammI francescosantini$ gcc esempio.c
esempio.c:8:7: error: conflicting types for 'min'
float min(float a, float b) {

^

MacBook-Francesco:ProgrammI francescosantini$ g++ esempio.c

SU LIBRO

Sezioni 5.1-5.6
Sezione 15.3

Sezione 7.4

