COSE STRANE

Progetto Esame Programmazione Procedurale
a.a. 2025/2026 - “Cosestrane”

Canali per le domande: ricevimento, email: francesco.santini @unipg.it, Telegram: @safran

9 Dicembre 2025

Si realizzi un programma in linguaggio C che consista dei seguenti tre file (utilizzare “obbligatoriamente”
questi tre nomi nel progetto, che fanno comunque gia parte del template Github):

* main.c contiene solo la definizione della funzione main().
* gamelib. c contiene le definizioni delle funzioni che implementano il gioco.

* gamelib.h contiene le dichiarazioni delle funzioni definite in gamelib. c (solo quelle non static) e
le definizioni dei tipi delle strutture dati utilizzate in gamelib. c.

La storia. Nella tranquilla cittadina di Occhinz, famosa per i Waffle Undici e per il numero inspiegabilmente
alto di biciclette scomparse, cominciano ad aprirsi strani portali dimensionali, collegando il Mondo Reale a
una versione oscura, polverosa, appiccicosa e decisamente poco accogliente: il temuto Soprasotto. I giocatori
si ritroveranno a esplorare entrambi i mondi, muovendosi tra luoghi familiari come boschi, strade e strutture
abbandonate, e le loro versioni distorte. Qui dovra evitare minacce come il Demotorzone e altre presenze che
infestano la dimensione oscura, cercando nel frattempo di trovare un’uscita verso la realta.

main.c. Questo file contiene solo la funzione main(), il cui compito ¢ stampare un menu di scelte verso il
giocatore ed aspettare il suo comando. Le possibili scelte sono: /) imposta gioco, 2) gioca, 3) termina gioco,
4) visualizza i crediti. Suggerimento: utilizzare un ciclo do...while per stampare il menu (dato che deve essere
stampato per lo meno una volta), leggere la scelta del giocatore da tastiera e con uno switch eseguire i comandi
per effettuare la scelta richiesta. In caso in cui il comando non sia 1-2-3-4, stampare al giocatore un messaggio
che il comando ¢ sbagliato e poi ristampare il menu. Eseguire controlli simili sull’input anche per tutte le altre
letture da tastiera presenti nel gioco. Nel caso la scelta sia 1, 2, 3 o 4, chiamare la corrispondente funzione
definita in gamelib.c, cioe imposta_gioco(), gioca(), termina_gioco(), o crediti(). Si puo impostare il gioco piu
volte di fila prima di combattere (liberando ogni volta tutta la memoria dinamica allocata in precedenza). Non



si puo giocare se prima non ¢ stato impostato il gioco. Una volta che il combattimento ¢ finito, si torna sempre
a questo menu, dal quale ¢ poi possibile uscire premendo 3.

gamelib.h. Questo file deve contenere solamente le dichiarazioni delle quattro funzioni introdotte preceden-
temente, e le definizioni dei tipi utilizzati nella libreria, cioe i tipi struct Giocatore, struct Zona_mondoreale,
struct Zona_soprasotto, enum Tipo_zona, enum Tipo_nemico e enum Tipo_oggetto:

» La struct Giocatore rappresenta ciascun giocatore. Il campo nome memorizza il nome scelto dall’utente
(una stringa di caratteri). Il campo mondo specifica in quale delle due dimensioni si trova attualmente il
personaggio, con 0 per il Mondo Reale e 1 per il Soprasotto. Poiché il giocatore puo trovarsi soltanto in
una delle due mappe alla volta, la struttura contiene due puntatori separati: pos_mondoreale, che indica
la zona del Mondo Reale in cui si trova se il campo mondo vale 0, e pos_soprasotto, che punta alla zona
corrispondente nel Sottosopra quando il campo mondo vale 1. Ciascun giocatore ha anche tre abilita
(ossia, capi della struttura): attacco_pischico, difesa_pischica, fortuna, che assumono un valore da 1 a
20. Infine, il giocatore si puo portare dietro fino ad un massimo di 3 oggetti di tipo enum Tipo_oggetto:
rappresentare il campo zaino come un array.

* struct Zona_mondoreale rappresenta una singola area della mappa del Mondo Reale e costituisce un
nodo di una lista doppiamente collegata che modella la citta di Occhinz e i suoi dintorni. Ogni zona ¢
descritta da un campo tipo (di tipo enum Tipo_zona). Inoltre, sono presenti i campi nemico di tipo enum
Tipo_nemico e oggetto di tipo enum Tipo_oggetto. 1 campi avanti e indietro sono puntatori che collegano
la zona rispettivamente alla zona successiva e a quella precedente della mappa, consentendo di percor-
rerla in entrambe le direzioni. Il campo link_soprasotto ¢ un puntatore diretto alla zona corrispondente
nell’altra mappa, quella del Soprasotto.

* struct Zona_soprasotto rappresenta una singola area della mappa del Soprasotto e costituisce anch’essa
un nodo di una lista doppiamente collegata che modella la versione speculare di Occhinz. Ogni zona ¢
descritta da un campo tipo (di tipo enum Tipo_zona). Anche in questo caso ¢ presente il campo nemico di
tipo enum Tipo_nemico, ma NON ¢ presente il campo oggetto. 1 campi avanti e indietro sono puntatori
che svolgono anche qui la stessa funzione di potersi muovere avanti e indietro in questa lista. Il campo
link_mondoreale ¢ un puntatore diretto alla zona corrispondente nell’altra mappa, quella del Soprasotto.

* enum Tipo_zona pud assumere i valori bosco, scuola, laboratorio, caverna, strada, giardino, supermer-
cato, centrale_elettrica, deposito_abbandonato, stazione_polizia.

* enum Tipo_nemico: pud assumere i valori nessun_nemico, billi, democane, demotorzone.

» enum Tipo_oggetto: puo assumere i valori nessun_oggetto, bicicletta, maglietta_fuocoinferno, bussola,
schitarrata_metallica.

gamelib.c. Questo file rappresenta il nucleo del progetto e contiene tutte le definizioni di funzione necessarie
per il gioco. Tutte le funzioni che non sono imposta_gioco(), gioca(), termina_gioco(), o crediti() devono
essere definite con lo specificatore static, dato che non devono essere visibili all’esterno di questo file.
Possono essere aggiunte funzioni a piacere per personalizzare il gioco rispetto a questa traccia (indicare le
modifiche/aggiunte su GitHub, come descritto al termine di questo documento).
La funzione imposta_gioco() puo essere chiamata piu volte in sequenza per reimpostare il gioco dopo averlo
gia impostato.



prima_zona_mondoreale

prima_zona_soprasotto

—

<2\ link_sop : : link_sop , :

 — —\
\ B o

Figura 1: Un esempio di mappa di gioco con due sole zone.

* imposta_gioco(). Questa funzione chiede, come prima cosa, di inserire da tastiera il numero di giocatori,
che puo variare tra 1 e 4. Ogni giocatore ¢ rappresentato da una struct Giocatore allocata in memoria
dinamica. L’insieme dei giocatori ¢ rappresentato da un array di 4 Struct Giocatore* (NULL se il gio-
catore non partecipa al gioco o muore). A ogni giocatore si chiede di inserire il proprio nome, e poi si
lancia un dado da 20 per stabilire i valori di attacco_pischico, difesa_pischica e fortuna. Ogni giocatore
puo a questo punto scegliere se aumentare attacco_pischico di 3 punti diminuendo difesa_pischica di
3 punti, o viceversa. Un giocatore puo anche scegliere di diventare UndiciVirgolaCinque aumentando
attacco_pischico e difesa_pischica di 4 punti, ma diminuendo la fortuna di 7 punti. Un solo giocatore
per partita puo diventare UndiciVirgolaCinque, ed il suo nome cambia di conseguenza. All’inizio del
gioco, lo zaino ¢ vuoto per ciascun giocatore.

Dopodiché, si deve generare la mappa di gioco, costituita da due liste, una di struct Zona_mondoreale e
una di struct Zona_soprasotto. Per questo ¢’¢ quindi bisogno di un puntatore globale per memorizzare la
prima della mappa che rappresenta il Mondo Reale (struct Zona_mondoreale* prima_zona_mondoreale),
e analogo puntatore per la lista che rappresenta la mappa del Soprasotto (struct Zona_soprasotto* pri-
ma_zona_soprasotto). Le due mappe sono implementate come una lista doppiamente collegata. In
questo modo, il giocatore potra tornare sui propri passi. Un esempio di mappa con due sole zone ¢ mo-
strato in Figura[I] Per la creazione della mappa, si lascia la possibilita all’utente (supponiamo sia un
“game master” in questo caso) di richiedere tramite un menu le seguenti cinque funzioni:

1) La funzione genera_mappa() crea 15 zone, assegnando casualmente a ciascuna il suo tipo con pro-
babilita uguali: per esempio, una zona ¢ una scuola con probabilita 1 su 10 (10%). Generare anche
il nemico e I’oggetto (quest’ultimo presente solo se la zona ¢ del Mondo Reale), con probabilita
tali da garantire un minimo di giocabilita. nessun_nemico e democane possono essere presenti in
entrambi 1 mondi, mentre billi & presente solo nel Mondo Reale e demotorzone solo nel Soprasotto.
Un solo demotorzone deve essere SEMPRE presente nella mappa del Soprasotto essendo condizio-
ne per la vittoria dei giocatori (vedere in seguito). Ad una chiamata successiva di questa funzione si
sovrascriveranno le 15 zone create con altre 15, eliminando tutte quelle precedenti. In questo modo
saranno create 15 zone per il Mondo Reale e 15 corrispondenti per il Soprasotto. Il tipo della zona



2)

3)

4)

5)

6)

corrispondente del Soprasotto ¢ lo stesso di quello del Mondo Reale, mentre il campo nemico pua
variare.

inserisci_zona() questa funzione inserisce in una posizione a piacere (in posizione i) una nuova
zona con 1 campi generati casualmente (come in genera_mappa()). Allo stesso modo, si inserisce
la zona speculare corrispondente nella lista delle zone del Soprasotto. Chiedere all’utente (cioe
far scegliere) 1 valori dei campi nemico e oggetto, inserendoli dalla tastiera e rispettando gli stessi
vincoli della funzione genera_mappa()).

cancella_zona() questa funzione cancella la zona in una posizione a piacere (in posizione i). Allo
stesso modo, si cancella dalla lista delle zone del Soprasotto la zona speculare corrispondente.

Stampa tutti i campi di tutte le zone create fino a quel momento (stampa_mappa()). A scelta
dell’utente, questa funzione stampa tutta la mappa del Mondo Reale o quella del Soprasotto.

La funzione stampa_zona()) stampa tutti 1 campi di una delle zone del Mondo Reale a scelta
dell’utente (in posizione 7) € di quella collegata ad essa nel Soprasotto.

Fine della creazione della mappa: chiudi_mappa(). Ci si ricorda che la creazione della mappa ¢
terminata (per esempio, impostando una variabile globale e statica da 0 a 1). Questa variabile viene
controllata quando si chiama gioca(), per verificare che il gioco sia stato in effetti completamente
impostato. Infine si esce anche dalla funzione imposta_gioco(). Non si puo chiudere la mappa se ci
sono meno di 15 zone nella mappa di gioco, oppure se non € presente uno (e uno solo) demotorzone.

* gioca(). Si controlla se il gioco sia stato impostato correttamente e poi, in caso affermativo, si passa alla
fase di gioco vera e propria, le cui funzioni sono riportate di seguito. Tutti i giocatori iniziano il gioco
nella prima zona della mappa del Mondo Reale. Anche in questo caso, le funzioni devono essere definite
come static perché non sono visibili all’esterno della libreria di gioco.

Il gioco ¢ strutturato in turni. Il giocatore che muove in un dato turno & scelto a caso, anche se prima di
poter rigiocare un turno tutti i giocatori rimanenti devono aver giocato il loro; ad esempio, tre giocatori
possono giocare nell’ordine 2-3-1, e poi si riparte, sempre con un nuovo ordine casuale. In ogni turno di
ogni giocatore, la funzione avanza() puo essere richiamata una sola volta; per passare il turno a un altro
giocatore, usare la funzione passa(). Durante il turno di un giocatore, le funzioni che possono essere
chiamate per giocare sono:

1y

2)

3)

avanza(): si avanza nella zona successiva a quella in cui ci si trova (rispetto alla mappa in cui ci si
trova, o del Mondo Reale o del Soprasotto). Prima di avanzare, si deve combattere il nemico, se
nella stanza in cui ci si trova ce n’¢ uno.

indietreggia(): si indietreggia nella zona precedente a quella in cui ci si trova (rispetto alla mappa
del Mondo Reale o Soprasotto in cui ci si trova). Prima di indietreggiare, si deve combattere il
nemico, se nella stanza in cui ci si trova ce n’€ uno.

cambia_mondo(): se ci si trova nella mappa del Mondo Reale, con questa funzione si viene catapul-
tati in quello del Soprasotto, cio¢ nella zona del Soprasotto corrispondente a quella in cui si trova il
giocatore; se ci si trova nel Soprasotto, con questa funzione si torna al Mondo Reale (sempre nella
zona corrispondente a quella in cui ci si trova). Vale come una avanza() in questo caso € non si puo
quindi chiamare cambia_mondo() se avanza() ¢ gia stata chiamata in questo turno del giocatore,
oppure se non si ¢ sconfitto il nemico del Mondo Reale. Nel caso in cui il giocatore si trovi sulla
mappa del Soprasotto, questa funzione si pud chiamare senza vincoli, quindi anche per scappare
da un eventuale nemico; ¢ necessario, pero, prima lanciare un dado da 20 e ottenere un punteggio
inferiore alla propria fortuna.



#include <stdio.h>
#include <stdlib.h> // Da includere per utilizzare rand() e srand ()
#include <time.h> // Da includere per utilizzare time ()

int main () {

time_t t;

/+ Inizializza il generatore di numeri casuali utilizzando il tempo attuale =/
srand ((unsigned) time(&t)); // Funzione da chiamare una volta sola nel programma
/% Ritorna un numero tra 0 e 99 =/

printf ("%d\n", rand() % 100); // Chiamare quando si ha bisogno di un numero random

Figura 2: Esempio di come generare un numero casuale tra 0 e 99. Per generare un valore tra 1 e 6 le
considerazioni sono simili, basta cambiare il modulo.

4)

5)
6)
7)

8)

9)

combatti(): se ci si trova in una stanza con un nemico, questa funzione avviera un sottomenu di
combattimento. Implementare la propria procedura di combattimento utilizzando almeno le carat-
teristiche attacco_pischico, difesa_pischica e fortuna, ed eventualmente anche gli oggetti posseduti
dal giocatore nel suo zaino (vedi sotto, nella funzione utilizza_oggetto()). 1l giocatore pud morire
durante il combattimento. I diversi nemici possono avere caratteristiche differenti. Dopo che un
giocatore ha sconfitto un nemico, c¢’¢ un 50% di probabilita che questi scompaia dalla zona, quindi
1 giocatori che entrano in quella zona in seguito non siano costretti a combatterlo.

stampa_giocatore(): stampa 1 valori di tutti i campi del giocatore.
stampa_zona(): stampa 1 valori di tutti i campi della zona in cui si trova il giocatore.

raccogli_oggetto(): in una zona con un oggetto ¢ possibile raccoglierlo, purché ci sia spazio nello
zaino. Non si puo raccogliere un oggetto se prima non si € ucciso il nemico, se ¢ presente nella
stanza in cui ci si trova.

utilizza_oggetto(): 1’oggetto viene utilizzato. Per ciascuno dei possibili oggetti (vedi enum Ti-
po_oggetto) implementare un effetto diverso. Un oggetto puod essere utilizzato anche durante la
fase di combattimento, se si desidera.

passa(): il giocatore cede il proprio turno al prossimo giocatore.

* termina_gioco() termina il gioco salutando i giocatori.

* crediti() mostra il nome del creatore del gioco, i nomi dei vincitori delle ultime tre partite (i giocatori) ed
eventuali altre statistiche della partita.

Il primo giocatore a sconfiggere il demotorzone ¢ il vincitore. Il gioco termina anche in caso in cui tutti i
giocatori muoiano. Quando il gioco termina, ¢ possibile reimpostare il gioco (imposta_gioco()) e giocare nuo-
vamente su una nuova mappa. Ricordarsi di deallocare (con free) tutta la memoria dinamica allocata giocando
precedentemente (per esempio, la lista delle stanze). Ricordarsi di deallocare anche i giocatori durante il gioco,
qualora muoiano.

Per compilare. Includere gamelib.h dentromain.c e dentro gamelib.c (i.e. #include “gamelib.h”).
A questo punto si pud compilare indipendentemente main.cegamelib.c,conicomandi gcc —c main.c



egcc —c gamelib.c (vengono generati, rispettivamente, i file main.o e gamelib. o). Infine, per com-
porre i due file, linkarli con gcc -0 gioco main.o gamelib.o. Aggiungere sempre i flag -std=cll
-Wall (per esempio gcc —c game.c -std=cll -Wall), per essere sicuri di seguire lo standard C 2011
e farsi segnalare tutti i warning. I warning vanno tutti rimossi.

Note finali. I testo deve essere ritenuto una traccia da seguire il pill possibile, ma lo studente ¢ libero di
modificare ed estendere alcune parti, con la possibilita di ottenere punti aggiuntivi nella valutazione nei casi
in cui I’estensione sia giudicata considerevole. Si possono utilizzare solamente le funzioni di libreria standard
del Cﬂ contattare il docente in caso si vogliano utilizzare librerie differenti. Come ispirazione, possono essere
utilizzati gli esempi svolti nei progetti degli anni passati presenti sulla pagina del corsoﬂ

Verranno accettate solo le sottomissioni tramite il link GitHub Classroom fornito per ogni appello, che
sara pubblicizzato sia sulla pagina Web del corso sia su Unistudium. Il link sara sempre diverso, ricordarsi si
utilizzare 1l link relativo all’appello orale nel quale ci si vuole presentare. Attenzione: risottomettere sempre
il progetto con il link dell’appello a cui si vuole presentare, anche se il progetto ¢ gia stato sottomesso con
il link di appelli precedenti. Lo studente deve essere in grado di verificare da solo se il push delle modifiche
effettuate in locale ¢ andato a buon fine (non si risponde a domande come “Puo controllare se ho sottomesso
correttamente?”). L’utilizzo delle funzionalita minime di GitHub rientra infatti tra le conoscenze richieste dal
corso. Non ¢ necessario avere i diritti di amministratore da parte dello studente, che infatti non sono concessi, in
modo da, per esempio, non poter rendere pubblico il repository (in quanto esercizio individuale). Nel template
dell’esercizio ¢ presente un file .gitignore che previene il push di file eseguibili (.exe o .out) e altri, che non
devono far parte del versionamento offerto da GitHub.

Ricordarsi di aggiungere nome, cognome e matricola nel file README del progetto su GitHub. Sempre nel
file README descrivere brevemente le ulteriori funzionalita introdotte, in caso siano state aggiunte, o comun-
que le scelte progettuali che si vogliono dettagliare (ad esempio, lettura o scrittura di dati su file, ecc.).

Il programma verra testato su Ubuntu 24.04.3 LTS, che fornisce di base almeno la versione 13.2 di GCC.
Eventuali errori, come parentesi mancanti, verranno inoltre considerati errori, anche se un compilatore diverso
da questo le tollera.

'https://it.wikipedia.org/wiki/Libreria_standard_del_C.
http://www.dmi.unipg.it/francesco.santini/progI.html.

6


https://it.wikipedia.org/wiki/Libreria_standard_del_C.
http://www.dmi.unipg.it/francesco.santini/progI.html

