
Prova scritta Programmazione Procedurale con Lab. - 30 Gennaio 2026

Nome e Cognome: Matricola:
Le soluzioni che verranno valutate sono solamente quelle riportate in questo foglio. Utilizzare (e consegnare) i

fogli protocollo utilizzati per i calcoli.

1. 3 punti Marcare le a!ermazioni vere.

→ Le funzioni malloc() e calloc() restituiscono la quantità di byte allocati.
→ C’è un errore in: int a; int→p = &a; free(p);
→ malloc() alloca la memoria ed inizializza tutti i byte a 0.
→ calloc(5,3) e malloc(15) allocano la stessa quantità di byte in memoria.

2. 3 punti Elencare le parti che compongono gcc in ordine di esecuzione (solo i loro nomi).

3. 3 punti Marcare le a!ermazioni vere che riguardano la funzione realloc() (Soluzione obbligatoria nel ri-

quadro).

→ La realloc prende come parametro solamente una quantità di byte.
→ La realloc ritorna un valore di tipo void→.
→ La realloc può ritornare 0 come valore.
→ L’indirizzo di memoria ritornato dalla funzione è sempre uguale all’indirizzo passato alla realloc.

4. 4 punti Descrivere la regola di conversione applicata alla linea 4.

1 i n t i = −1;

2 unsigned i n t l im i t = 200U;

3

4 i f (i < l im i t)

5 p r i n t f (”%d” , i) ;

6

5. 6 punti Scrivere cosa stampa il seguente programma, sapendo che a si trova all’indirizzo 0x7!ee4399!e.

1 i n t a= 0x1b , i= 3 , ∗b= &a ;

2

3 f o r (i n t ∗ p= &i ; (a−= 1) ? (∗p++, −−a) : ((∗p)+=2, a) ; ∗p++)

{
4 a= (a − i) ;

5 p r i n t f (”%d %d OK\n” , a , ∗p) ;
6 i f (a <= 0) {
7 a= 1 ;

8 cont inue ; }
9 }

10 p r i n t f (”%d %p\n” , a , ((shor t ∗) b) + 1) ;

Preprocessore - Compilatore - Assembler - Linker

Regola 1 su slide conversioni tipo

La Regola1 dice che, se in un’espressione il tipo di x è unsigned TipoT
(parliamo di tipi interi) il cui grado di conversione è per lo meno tanto
alto tanto quello dell’altro operando (y), allora il tipo dell’altro operando
(y) è convertito ad unsigned TipoT.

Alla linea 4, l’operando di tipo int (i) viene convertito a unsigned int (il
tipo di limit).

22 _ OK
17 _ OK
12 _ OK
7 _ OK
2 _ OK
0 0x7ffee439a000

I valori indicati con _ sono
indefiniti perché il puntatore
p, dopo essere stato
incrementato, viene
dereferenziato quando non
punta più all’oggetto i.
L’accesso a memoria fuori
dall’oggetto di origine non è
definito in C e dipende
dall’implementazione.

6. 5 punti Scrivere una funzione che prende
una matrice n ↑ n (righe per
colonne) di valori int come
parametro e restituisce un array
contenente tutti gli elementi sulla
seconda diagonale.

7. 6 punti Cerchiare le a!ermazioni vere dato long long a[3]= {1537, -67, (LLONG MAX + 1) + 512};
int

→
p = (int

→
) a; char

→
q= (char

→
) a; p[1]= INT MAX, p[4]+= 2048, q[19]= ↓q[19]; sapendo che i tre tipi

usati occupano 8, 4, e 1 byte, con valori rappresentati in little endian e complemento a due. Scrivere la mappa
di memoria e giustificare le a!ermazioni (vere o false).

A. (↓ (p[3] & p[1])) == p[5] B. →((long long→)(&p[1])) < →((long long→)(&p[2])) C. ((long long→)(&p[1])) <
((short int→)(&p[2]))

int *seconda_diagonale(int n, int m[n][n]) {
 if (n <= 0) {
 return NULL;
 }

 int *diag = malloc(n * sizeof(int));
 if (diag == NULL) {
 return NULL;
 }

 for (int i = 0; i < n; i++) {
 diag[i] = m[i][n - 1 - i];
 }

 return diag;
}

A: p[3] & p[1] ==

applicando / bit a bit
la negazione bit a bit (~) di questo risultato equivale
a p[5], quindi VERA

 10000000
 01100000
 00000000
 00000000

 11111111
 11111111
 11111111
 11111110

 10111101
 11111111
 11111111
 11111111

 11111111
 11111111
 11111111
 11111111

 00000000
 01010000
 00000000
 11111111

 00000000
 00000000
 00000000
 00000001

*(p+3) o p[3]

p[5]

p[1]

11111111
11111111
11111111
11111110

B: dal bit più significativo si capisce che entrambi i
valori *((long long*)(&p[1])) e *((long long*)(&p[2]))
sono negativi.
((long long)(&p[2])) equivale a -1 da cui poi sottraggo
2 + 64 - 67== mentre
((long long)(&p[1])) equivale a -1 da cui sottraggo
potenze di due più elevate (2 alla 30, 2 alla 32, 2 alla 37).
Quindi *((long long*)(&p[1])) < *((long long*)(&p[2]))
VERA

p[2]
((long long)(&p[1]))

((long long)(&p[2]))

C: &p[1] è un indirizzo che precede &p[2] in
memoria, che sia convertito a indirizzo a short o a
long long non fa mutare il suo valore, quindi VERA

