Prova scritta Programmazione Procedurale con Lab. - 30 Gennaio 2026 ‘

Nome e Cognome: Matricola:

Le soluzioni che verranno valutate sono solamente quelle riportate in questo foglio. Utilizzare (e consegnare) i
fogli protocollo utilizzati per i calcoli.

1. Marcare le affermazioni vere.
(O Le funzioni malloc() e calloc() restituiscono la quantita di byte allocati.
X C’¢ un errore in: int a;int*p = &a; free(p);
O malloc() alloca la memoria ed inizializza tutti i byte a 0.
X calloc(5,3) e malloc(15) allocano la stessa quantita di byte in memoria.

2. Elencare le parti che compongono gcce in ordine di esecuzione (solo i loro nomi).

Preprocessore - Compilatore - Assembler - Linker

3. Marcare le affermazioni vere che riguardano la funzione realloc() (Soluzione obbligatoria nel ri-
quadro).
(O La realloc prende come parametro solamente una quantita di byte.
La realloc ritorna un valore di tipo void*.

‘g La realloc puo ritornare 0 come valore.
(O L’indirizzo di memoria ritornato dalla funzione ¢ sempre uguale all’indirizzo passato alla realloc.

4. Descrivere la regola di conversione applicata alla linea 4.

1 int 1 = —1; Regola 1 su slide conversioni tipo

2 unsigned int limit = 200U;

3 La Regola1 dice che, se in un’espressione il tipo di x € unsigned TipoT
4 if (i < limit) (parliamo di tipi interi) il cui grado di conversione € per lo meno tanto

5 printf(P%d”, i); alto tanto quello dell’altro operando (y), allora il tipo dell’altro operando
6 (y) & convertito ad unsigned TipoT.

Alla linea 4, 'operando di tipo int (i) viene convertito a unsigned int (il
tipo di limit).

5. Scrivere cosa stampa il seguente programma, sapendo che a si trova all’indirizzo 0x7ffee4399ffe.

1 int a= Oxlb, i= 3, xb= &a; ?3_8§
2 . . 12_OK
3 for (int*x p=&i; (a—= 1) ? (*p++, —a) : ((*p)+=2, a); *p++) 7 OK
{ . 2 OK

a= (a — 1) 0 Ox7ffee439a000

printf ("% %d OK\n”, a, *p);
if (a<=0) {

a= 1;

continue; }

| valori indicati con _ sono
indefiniti perché il puntatore
p, dopo essere stato
incrementato, viene
dereferenziato quando non
10 printf("%d %p\n”, a, ((shortx) b) + 1); punta pit alloggetto i.
L'accesso a memoria fuori

© W N o U

dalloggetto di origine non &
definito in C e dipende
dallimplementazione.

6. Scrivere una funzione che prende

una matrice n X n (righe per int ;s(econd??diagonale(intn, int m[n][n]) {
if(n<=0
return NULL;

colonne) di wvalori int come
parametro e restituisce un array }
contenente tutti gli elementi sulla

seconda diagonale int *diag = malloc(n * sizeof(int));

if (diag == NULL) {
return NULL,;
}

for (inti=0;i<n;i++) {
diag[i] = m[i][n - 1 -1i];

return diag;

7. Cerchiare le affermazioni vere dato long long a/3]= {1587, -67, (LLONG_MAX + 1) + 512};
int *p = (int*) a; char *q= (char*) a; p[1]= INT-MAX, p[i]+= 2048, q[19]= ~q[19]; sapendo che i tre tipi
usati occupano 8, 4, e 1 byte, con valori rappresentati in little endian e complemento a due. Scrivere la mappa
di memoria e giustificare le affermazioni (vere o false).

<~ (p[3) & p[1))) == p[5] (B ((long long") (&p[1])) < *((long long")(&p[2])) (T ((long long")(&ep[1])) <
short int*)(&p[2]))

10000000 11111111

01100000 A:p[3] & p[1]== 11111111

00000000 11111111

00000000 11111110
|D[1\]A applicando / bit a bit

la negazione bit a bit (~) di questo risultato equivale
a p[5], quindi VERA

((long long)(&p[1]))

2
10111101 4~ L2l
11111111
11111111
11111111
- (p+3) 0 pI3] *((long long*)(&p[2]))
B: dal bit piu significativo si capisce che entrambi i
00000000 valori *((long long*)(&p[1])) e *((long long*)(&p[2]))
01010000 sono negativi.
00000000 *((long long*)(&p[2])) equivale a -1 da cui poi sottraggo
LLARRRRY 2 + 64 - 67== mentre
((long long)(&p[1])) equivale a -1 da cui sottraggo
00000000 potenze di due piu elevate (2 alla 30, 2 alla 32, 2 alla 37).
uindi *((long long*)(&p[1])) < *((long long*)(&p[2
00000000 SERA ((long long*)(&p[1])) < *((long long*)(&p[2]))

C: &p[1] € un indirizzo che precede &p[2] in
memoria, che sia convertito a indirizzo a short o a
long long non fa mutare il suo valore, quindi VERA

